Misplaced Pages

Solid-state dye laser

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Solid state dye lasers) Laser with a dye-doped organic matrix
Organic solid-state narrow-linewidth tunable dye laser oscillator

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

SSDLs were introduced in 1967 by Soffer and McFarland.

Organic gain media

In the 1990s, new forms of improved PMMA, such as modified PMMA, with high optical quality characteristics were introduced. Gain media research for SSDL has been rather active in the 21st century, and various new dye-doped solid-state organic matrices have been discovered. Notable among these new gain media are organic-inorganic dye-doped polymer-nanoparticle composites. An additional form of organic-inorganic dye-doped solid-state laser gain media are the ORMOSILs.

High performance solid-state dye laser oscillators

This improved gain medium was central to the demonstration of the first tunable narrow-linewidth solid-state dye laser oscillators, by Duarte, which were later optimized to deliver pulse emission in the kW regime in nearly diffraction limited beams with single-longitudinal-mode laser linewidths of Δ ν {\displaystyle \Delta \nu } ≈ 350 MHz (or Δ λ {\displaystyle \Delta \lambda } ≈ 0.0004 nm, at a laser wavelength of 590 nm). These tunable laser oscillators use multiple-prism grating architectures yielding very high intracavity dispersions that can be nicely quantified using the multiple-prism grating equations.

Distributed feedback and waveguide solid-state dye lasers

Additional developments in solid-state dye lasers were demonstrated with the introduction of distributed feedback laser designs in 1999 and distributed feedback waveguides in 2002.

See also

References

  1. Duarte, F. J.; Taylor, T. S.; Costela, A.; Garcia-Moreno, I.; Sastre, R. (1998). "Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator". Applied Optics. 37 (18): 3987–3989. Bibcode:1998ApOpt..37.3987D. doi:10.1364/AO.37.003987. PMID 18273368.
  2. Soffer, B. H.; McFarland, B. B. (1967). "Continuously Tunable, Narrow-Band Organic Dye Lasers". Applied Physics Letters. 10 (10): 266. Bibcode:1967ApPhL..10..266S. doi:10.1063/1.1754804.
  3. Maslyukov, A.; Sokolov, S.; Kaivola, M.; Nyholm, K.; Popov, S. (1995). "Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements". Applied Optics. 34 (9): 1516–1518. Bibcode:1995ApOpt..34.1516M. doi:10.1364/AO.34.001516. PMID 21037689.
  4. A. J. C. Kuehne and M. C. Gather, Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques, Chem. Rev. 116, 12823-12864 (2016).
  5. Duarte, F. J.; James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". Optics Letters. 28 (21): 2088–90. Bibcode:2003OptL...28.2088D. doi:10.1364/OL.28.002088. PMID 14587824.
  6. Costela, A.; Garcia-Moreno, I.; Sastre, R. (2009). "Solid state dye lasers". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp. 97–120. ISBN 978-1-4200-6009-6.
  7. ^ Duarte, F. J.; James, R. O. (2009). "Tunable lasers based on dye-doped polymer gain media incorporating homogeneous distributions of functional nanoparticles". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp. 121–142. ISBN 978-1-4200-6009-6.
  8. ^ Duarte, F. J., F. J. (1994). "Solid-state multiple-prism grating dye-laser oscillators". Applied Optics. 33 (18): 3857–3860. Bibcode:1994ApOpt..33.3857D. doi:10.1364/AO.33.003857. PMID 20935726.
  9. ^ Duarte, F. J. (1999). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. 38 (30): 6347–6349. Bibcode:1999ApOpt..38.6347D. doi:10.1364/AO.38.006347. PMID 18324163.
  10. Duarte, F. J. (2015). "The physics of multiple-prism optics". Tunable Laser Optics (2nd ed.). New York: CRC Press. pp. 77–100. ISBN 978-1-4822-4529-5.
  11. Wadsworth, W. J.; McKinnie, I. T.; Woolhouse, A. D.; Haskell, T. G. (1999). "Efficient distributed feedback solid state dye laser with a dynamic grating". Applied Physics B. 69 (2): 163–169. Bibcode:1999ApPhB..69..163W. doi:10.1007/s003400050791. S2CID 122330477.
  12. Zhu, X-L; Lam, S-K; Lo, D. (2000). "Distributed-feedback dye-doped solgel silica lasers". Applied Optics. 39 (18): 3104–3107. Bibcode:2000ApOpt..39.3104Z. doi:10.1364/AO.39.003104. PMID 18345240.
  13. Oki, Y.; Miyamoto, S.; Tanaka, M.; Zuo, D.; Maeda, M. (2002). "Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers". Optics Communications. 214 (1–6): 277–283. Bibcode:2002OptCo.214..277O. doi:10.1016/S0030-4018(02)02125-9.
Dye lasers (liquid state)
Laser dyes
Aspects
Solid-state lasers
Distinct subtypesSemiconductor laser
Yttrium aluminium garnet
Glass
Other gain media
Structures
Specific lasers
Category: