Misplaced Pages

Silicide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Chemical compound that combines silicon and a more electropositive element
Structure of titanium disilicide (Ti = white spheres).

A silicide is a type of chemical compound that combines silicon and a usually more electropositive element.

Silicon is more electropositive than carbon. In terms of their physical properties, silicides are structurally closer to borides than to carbides. Because of size differences however silicides are not isostructural with borides and carbides.

Bonds in silicides range from conductive metal-like structures to covalent or ionic. Silicides of all non-transition metals have been described except beryllium. Silicides are used in interconnects.

Structure

Silicon atoms in silicides can have many possible organizations:

  • Isolated silicon atoms: electrically conductive (or semiconductive) CrSi, MnSi, FeSi, CoSi, Cu5Si, (V,Cr,Mn)3Si, Fe3Si, Mn3Si, Mg2(Si,Ge,Sn,Pb), (Ca,Ru,Ce,Rh,Ir,Ni)2Si
  • Si2 pairs: U3Si2, hafnium and thorium silicides
  • Si4 tetrahedra: KSi, RbSi, CsSi
  • Sin chains: USi, (Ti, Zr, Hf, Th, Ce, Pu)Si, CaSi, SrSi, YSi
  • Planar hexagonal graphite-like Si layers: β-USi2, silicides of other lanthanoids and actinoids
  • Corrugated hexagonal Si layers: CaSi2
  • Open three-dimensional Si skeletons: SrSi2, ThSi2, α-USi2

Preparation and reactivity

Most silicides are produced by direct combination of the elements.

A silicide prepared by a self-aligned process is called a salicide. This is a process in which silicide contacts are formed only in those areas in which deposited metal (which after annealing becomes a metal component of the silicide) is in direct contact with silicon, hence, the process is self-aligned. It is commonly implemented in MOS/CMOS processes for ohmic contacts of the source, drain, and poly-Si gate.

Alkali and alkaline earth metals

Group 1 and 2 silicides e.g. Na2Si and Ca2Si react with water, yielding hydrogen and/or silanes.

Magnesium silicide reacts with hydrochloric acid to give silane:

Mg2Si + 4 HCl → SiH4 + 2 MgCl2

Group 1 silicides are even more reactive. For example, sodium silicide, Na2Si, reacts rapidly with water to yield sodium silicate, Na2SiO3, and hydrogen gas. Rubidium silicide is pyrophoric, igniting in contact with air.

Transition metals and other elements

The transition metal silicides are usually inert to aqueous solutions. At red heat, they react with potassium hydroxide, fluorine, and chlorine. Mercury, thallium, bismuth, and lead are immiscible with liquid silicon.

Applications

Silicide thin films have applications in microelectronics due to their high electrical conductivity, thermal stability, corrosion resistance, and compatibility with photolithographic wafer processes. For example silicides formed over layers of polysilicon, called polycides, are commonly used as an interconnect material in integrated circuits for their high conductivity. Silicides formed through the salicide process also see use as a low work function metal in ohmic and Schottky contacts. High work function metals are often not ideal for use in metal–semiconductor junctions directly due to fermi–level pinning where the Schottky barrier potential of the junction becomes locked around 0.7–0.8V. For this reason low forward-voltage Schottky diodes and ohmic interconnects between a semiconductor and a metal often utilize a thin layer of silicide at the metal–semiconductor interface.

List (incomplete)

See also

References

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 335-336. ISBN 978-0-08-037941-8.
  2. Schlesinger, Mark E. (1990). "Thermodynamics of solid transition-metal silicides". Chemical Reviews. 90 (4): 607–628. doi:10.1021/cr00102a003.
  3. Rubidium ampoule opened IN AIR for chemical reactions (Video). ChemicalForce. 22 Feb 2020. Event occurs at 10:51. Archived from the original on 2021-12-21. Retrieved 2020-02-23.
  4. Murarka, Shayam (1995). "Silicide thin films and their applications in microelectronics". Intermetallics. 3 (3): 173–186. doi:10.1016/0966-9795(95)98929-3. Retrieved 26 July 2023.
  5. Z. Ma, L. H. Allen (2004). "3.3 Fundamental aspects of Ti/Si thin film reaction". In L.J. Chen (ed.). Silicide Technology for Integrated Circuits (Processing). IET. pp. 50–61. ISBN 9780863413520.
  6. Monch, W. (1987). Role of virtual gap states and defects in metal-semiconductor contacts. Vol. 58. Physics Review Letter. pp. 1260–1263. doi:10.1103/PhysRevLett.58.1260.
Salts and covalent derivatives of the silicide ion
SiH4
+H
He
LiSi Be2Si SiB3
SiB6
+B
SiC
+C
Si3N4
-N
+N
SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP, SiP2
-P
+P
SiS2
-S
SiCl4 Ar
KSi CaSi
CaSi2
ScSi Sc5Si3 Sc2Si3 Sc5Si4 TiSi
TiSi2
V3Si V5Si3, V6Si5, VSi2, V6Si5 Cr3Si Cr5Si3, CrSi, CrSi2 MnSi, MnSi2, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 FeSi2
FeSi
Fe5Si3
Fe2Si
Fe3Si
CoSi, CoSi2, Co2Si, Co3Si NiSi, more… Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13 Zn Ga GeSi
+Ge
SiAs, SiAs2
-As
+As
SiSe2 SiSe SiBr4 Kr
RbSi SrSi2 YSi Y5Si3, Y5Si4, Y3Si5, YSi1.4 ZrSi Zr5Si3, Zr5Si4, ZrSi2, Zr3Si2, Zr2Si, Zr3Si Nb4Si Nb5Si3 MoSi2
Mo3Si Mo5Si3
Tc RuSi Ru2Si, Ru4Si3, Ru2Si3 RhSi Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 PdSi Pd5Si, Pd9Si2, Pd3Si, Pd2Si Ag Cd In Sn Sb TeSi2 Te2Si3 SiI4 Xe
CsSi Ba2Si BaSi2, Ba5Si3 Ba3Si4 * Lu5Si3 HfSi Hf2Si, Hf3Si2, Hf5Si4, HfSi2 Ta9Si2, Ta3Si, Ta5Si3 WSi2 W5Si3 ReSi Re2Si, ReSi1.8 Re5Si3 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaSi2 La5Si3, La3Si2, La5Si4, LaSi CeSi2 Ce5Si3, Ce3Si2, Ce5Si4, CeSi, Ce3Si5 PrSi2 Pr5Si3, Pr3Si2, Pr5Si4, PrSi NdSi Nd5Si3, Nd5Si4, Nd5Si3, Nd3Si4, Nd2Si3, NdSix Pm SmSi2 Sm5Si4, Sm5Si3, SmSi, Sm3Si5 Eu? GdSi2 Gd5Si3, Gd5Si4, GdSi TbSi2 SiTb, Si4Tb5, Si3Tb5 DySi2 DySi HoSi2 Ho5Si3, Ho5Si4, HoSi, Ho4Si5 ErSi2 Er5Si3, Er5Si4, ErSi Tm? YbSi Si1.8Yb, Si5Yb3, Si4Yb3, Si4Yb5, Si3Yb5
** Ac ThSi PaSi USi2 NpSi2 PuSi Am Cm Bk Cf Es Fm Md No
Monatomic anion compounds
Group 1
Group 13
Group 14
Group 15 (Pnictides)
Group 16 (Chalcogenides)
Group 17 (Halides)
Categories: