Misplaced Pages

700 (number)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 782 (number)) This article is about the numbers 700 through 799; for each individual number, see its section below. Natural number
← 699 700 701 →
0 100 200 300 400 500 600 700 800 900
Cardinalseven hundred
Ordinal700th
(seven hundredth)
Factorization2 × 5 × 7
Greek numeralΨ´
Roman numeralDCC
Binary10101111002
Ternary2212213
Senary31246
Octal12748
Duodecimal4A412
Hexadecimal2BC16
ArmenianՉ
Hebrewת"ש / ן
Babylonian cuneiform𒌋𒐕𒐏
Egyptian hieroglyph𓍨

700 (seven hundred) is the natural number following 699 and preceding 701.

It is the sum of four consecutive primes (167 + 173 + 179 + 181), the perimeter of a Pythagorean triangle (75 + 308 + 317) and a Harshad number.

Integers from 701 to 799

Nearly all of the palindromic integers between 700 and 800 (i.e. nearly all numbers in this range that have both the hundreds and units digit be 7) are used as model numbers for Boeing Commercial Airplanes.

700s

710s

  • 710 = 2 × 5 × 71, sphenic number, nontotient, number of forests with 11 vertices
  • 711 = 3 × 79, Harshad number, number of planar Berge perfect graphs on 7 nodes. Also the phone number of Telecommunications Relay Service, commonly used by the deaf and hard-of-hearing.
  • 712 = 2 × 89, refactorable number, sum of the first twenty-one primes, totient sum for first 48 integers. It is the largest known number such that it and its 8th power (66,045,000,696,445,844,586,496) have no common digits.
  • 713 = 23 × 31, Blum integer, main area code for Houston, TX. In Judaism there are 713 letters on a Mezuzah scroll.
  • 714 = 2 × 3 × 7 × 17, sum of twelve consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83), nontotient, balanced number, member of Ruth–Aaron pair (either definition); area code for Orange County, California.
    • Flight 714 to Sidney is a Tintin graphic novel.
    • 714 is the badge number of Sergeant Joe Friday.
  • 715 = 5 × 11 × 13, sphenic number, pentagonal number, pentatope number ( binomial coefficient ( 13 4 ) {\displaystyle {\tbinom {13}{4}}} ), Harshad number, member of Ruth-Aaron pair (either definition)
  • The product of 714 and 715 is the product of the first 7 prime numbers (2, 3, 5, 7, 11, 13, and 17)
  • 716 = 2 × 179, area code for Buffalo, NY
  • 717 = 3 × 239, palindromic number
  • 718 = 2 × 359, area code for Brooklyn, NY and Bronx, NY
  • 719 = prime number, factorial prime (6! − 1), Sophie Germain prime, safe prime, sum of seven consecutive primes (89 + 97 + 101 + 103 + 107 + 109 + 113), Chen prime, Eisenstein prime with no imaginary part

720s

Main article: 720 (number)

730s

  • 730 = 2 × 5 × 73, sphenic number, nontotient, Harshad number, number of generalized weak orders on 5 points
  • 731 = 17 × 43, sum of three consecutive primes (239 + 241 + 251), number of Euler trees with total weight 7
  • 732 = 2 × 3 × 61, sum of eight consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), sum of ten consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), Harshad number, number of collections of subsets of {1, 2, 3, 4} that are closed under union and intersection
  • 733 = prime number, emirp, balanced prime, permutable prime, sum of five consecutive primes (137 + 139 + 149 + 151 + 157)
  • 734 = 2 × 367, nontotient, number of traceable graphs on 7 nodes
  • 735 = 3 × 5 × 7, Harshad number, Zuckerman number, smallest number such that uses same digits as its distinct prime factors
  • 736 = 2 × 23, centered heptagonal number, happy number, nice Friedman number since 736 = 7 + 3, Harshad number
  • 737 = 11 × 67, palindromic number, blum integer.
  • 738 = 2 × 3 × 41, Harshad number.
  • 739 = prime number, strictly non-palindromic number, lucky prime, happy number, prime index prime

740s

  • 740 = 2 × 5 × 37, nontotient, number of connected squarefree graphs on 9 nodes
  • 741 = 3 × 13 × 19, sphenic number, 38th triangular number
  • 742 = 2 × 7 × 53, sphenic number, decagonal number, icosahedral number. It is the smallest number that is one more than triple its reverse. Lazy caterer number (sequence A000124 in the OEIS). Number of partitions of 30 into divisors of 30.
  • 743 = prime number, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part
  • 744 = 2 × 3 × 31, sum of four consecutive primes (179 + 181 + 191 + 193). It is the coefficient of the first degree term of the expansion of Klein's j-invariant, and the zeroth degree term of the Laurent series of the J-invariant. Furthermore, 744 = 3 × 248 where 248 is the dimension of the Lie algebra E8.
  • 745 = 5 × 149 = 2 + 3, number of non-connected simple labeled graphs covering 6 vertices
  • 746 = 2 × 373 = 1 + 2 + 3 = 1 + 2 + 3, nontotient, number of non-normal semi-magic squares with sum of entries equal to 6
  • 747 = 3 × 83 = 4 23 3 23 {\displaystyle \left\lfloor {\frac {4^{23}}{3^{23}}}\right\rfloor } , palindromic number.
  • 748 = 2 × 11 × 17, nontotient, happy number, primitive abundant number
  • 749 = 7 × 107, sum of three consecutive primes (241 + 251 + 257), blum integer

750s

  • 750 = 2 × 3 × 5, enneagonal number.
  • 751 = prime number, Chen prime, emirp
  • 752 = 2 × 47, nontotient, number of partitions of 11 into parts of 2 kinds
  • 753 = 3 × 251, blum integer
  • 754 = 2 × 13 × 29, sphenic number, nontotient, totient sum for first 49 integers, number of different ways to divide a 10 × 10 square into sub-squares
  • 755 = 5 × 151, number of vertices in a regular drawing of the complete bipartite graph K9,9.
  • 756 = 2 × 3 × 7, sum of six consecutive primes (109 + 113 + 127 + 131 + 137 + 139), pronic number, Harshad number
  • 757 = prime number, palindromic prime, sum of seven consecutive primes (97 + 101 + 103 + 107 + 109 + 113 + 127), happy number.
  • 758 = 2 × 379, nontotient, prime number of measurement
  • 759 = 3 × 11 × 23, sphenic number, sum of five consecutive primes (139 + 149 + 151 + 157 + 163), a q-Fibonacci number for q=3

760s

  • 760 = 2 × 5 × 19, centered triangular number, number of fixed heptominoes.
  • 761 = prime number, emirp, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part, centered square number
  • 762 = 2 × 3 × 127, sphenic number, sum of four consecutive primes (181 + 191 + 193 + 197), nontotient, Smith number, admirable number, number of 1's in all partitions of 25 into odd parts, see also Six nines in pi
  • 763 = 7 × 109, sum of nine consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), number of degree-8 permutations of order exactly 2
  • 764 = 2 × 191, telephone number
  • 765 = 3 × 5 × 17, octagonal pyramidal number
  • 766 = 2 × 383, centered pentagonal number, nontotient, sum of twelve consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89)
  • 767 = 13 × 59, Thabit number (2 × 3 − 1), palindromic number.
  • 768 = 2 × 3, sum of eight consecutive primes (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109)
  • 769 = prime number, Chen prime, lucky prime, Proth prime

770s

Main article: 777 (number)
  • 777 = 3 × 7 × 37, sphenic number, Harshad number, palindromic number, 3333 in senary (base 6) counting.
    • The numbers 3 and 7 are considered both "perfect numbers" under Hebrew tradition.
  • 778 = 2 × 389, nontotient, Smith number
  • 779 = 19 × 41, highly cototient number

780s

  • 780 = 2 × 3 × 5 × 13, sum of four consecutive primes in a quadruplet (191, 193, 197, and 199); sum of ten consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101), 39th triangular number,a hexagonal number, Harshad number
    • 780 and 990 are the fourth smallest pair of triangular numbers whose sum and difference (1770 and 210) are also triangular.
  • 781 = 11 × 71. 781 is the sum of powers of 5/repdigit in base 5 (11111), Mertens function(781) = 0, lazy caterer number (sequence A000124 in the OEIS)
  • 782 = 2 × 17 × 23, sphenic number, nontotient, pentagonal number, Harshad number, also, 782 gear used by U.S. Marines
  • 783 = 3 × 29, heptagonal number
  • 784 = 2 × 7 = 28 = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 {\displaystyle 1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}+7^{3}} , the sum of the cubes of the first seven positive integers, happy number
  • 785 = 5 × 157, Mertens function(785) = 0, number of series-reduced planted trees with 6 leaves of 2 colors
Main article: 786 (number)
  • 786 = 2 × 3 × 131, sphenic number, admirable number. See also its use in Muslim numerological symbolism.
  • 787 = prime number, sum of five consecutive primes (149 + 151 + 157 + 163 + 167), Chen prime, lucky prime, palindromic prime.
  • 788 = 2 × 197, nontotient, number of compositions of 12 into parts with distinct multiplicities
  • 789 = 3 × 263, sum of three consecutive primes (257 + 263 + 269), Blum integer

790s

  • 790 = 2 × 5 × 79, sphenic number, nontotient, a Harshad number in bases 2, 7, 14 and 16, an aspiring number, the aliquot sum of 1574.
  • 791 = 7 × 113, centered tetrahedral number, sum of the first twenty-two primes, sum of seven consecutive primes (101 + 103 + 107 + 109 + 113 + 127 + 131)
  • 792 = 2 × 3 × 11, number of integer partitions of 21, binomial coefficient ( 12 5 ) {\displaystyle {\tbinom {12}{5}}} , Harshad number, sum of the nontriangular numbers between successive triangular numbers
  • 793 = 13 × 61, Mertens function(793) = 0, star number, happy number
  • 794 = 2 × 397 = 1 + 2 + 3, nontotient
  • 795 = 3 × 5 × 53, sphenic number, Mertens function(795) = 0, number of permutations of length 7 with 2 consecutive ascending pairs
  • 796 = 2 × 199, sum of six consecutive primes (113 + 127 + 131 + 137 + 139 + 149), Mertens function(796) = 0
  • 797 = prime number, Chen prime, Eisenstein prime with no imaginary part, palindromic prime, two-sided prime, prime index prime.
  • 798 = 2 × 3 × 7 × 19, Mertens function(798) = 0, nontotient, product of primes indexed by the prime exponents of 10!
  • 799 = 17 × 47, smallest number with digit sum 25

References

  1. Sloane, N. J. A. (ed.). "Sequence A024364 (Ordered perimeters of primitive Pythagorean triangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
  2. ^ "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  3. ^ "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  4. ^ "Sloane's A000384 : Hexagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  5. "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  6. ^ "Sloane's A006753 : Smith numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  7. Sloane, N. J. A. (ed.). "Sequence A026671 (Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  8. Sloane, N. J. A. (ed.). "Sequence A002865 (Number of partitions of n that do not contain 1 as a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  9. Hougardy, Stefan (6 October 2006). "Classes of perfect graphs - ScienceDirect". Discrete Mathematics. Creation and Recreation: A Tribute to the Memory of Claude Berge. 306 (19): 2529–2571. doi:10.1016/j.disc.2006.05.021.
  10. Sloane, N. J. A. (ed.). "Sequence A005195 (Number of forests with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  11. Sloane, N. J. A. (ed.). "Sequence A123449 (Number of planar Berge perfect graphs on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  14. "Sloane's A000332 : Binomial coefficient binomial(n,4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  15. "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  16. ^ "Sloane's A005384 : Sophie Germain primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  17. "Sloane's A005385 : Safe primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  18. "Sloane's A003215 : Hex (or centered hexagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  19. Sloane, N. J. A. (ed.). "Sequence A066897 (Total number of odd parts in all partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  20. Sloane, N. J. A. (ed.). "Sequence A001105". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. Sloane, N. J. A. (ed.). "Sequence A016064 (Smallest side lengths of almost-equilateral Heronian triangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  22. Sloane, N. J. A. (ed.). "Sequence A003500". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  23. Sloane, N. J. A. (ed.). "Sequence A335025 (Largest side lengths of almost-equilateral Heronian triangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  24. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  25. ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  26. "Sloane's A047696 : Smallest positive number that can be written in n ways as a sum of two (not necessarily positive) cubes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  27. Sloane, N. J. A. (ed.). "Sequence A007749 (Numbers k such that k!! - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  28. "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  29. "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  30. Sloane, N. J. A. (ed.). "Sequence A004123 (Number of generalized weak orders on n points)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  31. Sloane, N. J. A. (ed.). "Sequence A007317 (Binomial transform of Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. Sloane, N. J. A. (ed.). "Sequence A306445 (Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  33. "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  34. Sloane, N. J. A. (ed.). "Sequence A057864 (Number of simple traceable graphs on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-22.
  35. "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  36. "Sloane's A016038 : Strictly non-palindromic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  37. Sloane, N. J. A. (ed.). "Sequence A077269 (Number of connected squarefree graphs on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  38. "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  39. Sloane, N. J. A. (ed.). "Sequence A018818 (Number of partitions of n into divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. Sloane, N. J. A. (ed.). "Sequence A327070 (Number of non-connected simple labeled graphs covering n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  41. Sloane, N. J. A. (ed.). "Sequence A321719 (Number of non-normal semi-magic squares with sum of entries equal to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  42. Sloane, N. J. A. (ed.). "Sequence A064628 (Floor(4^n / 3^n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  43. "Sloane's A091191 : Primitive abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  44. "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  45. Sloane, N. J. A. (ed.). "Sequence A000712". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  46. Sloane, N. J. A. (ed.). "Sequence A034295 (Number of different ways to divide an n X n square into sub-squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  47. Sloane, N. J. A. (ed.). "Sequence A331755 (Number of vertices in a regular drawing of the complete bipartite graph K_{9,9})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  48. Sloane, N. J. A. (ed.). "Sequence A002049 (Prime numbers of measurement)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  49. Sloane, N. J. A. (ed.). "Sequence A015474". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  50. "Sloane's A005448 : Centered triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  51. "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  52. Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. Sloane, N. J. A. (ed.). "Sequence A001189 (Number of degree-n permutations of order exactly 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  54. "Sloane's A000085 : Number of self-inverse permutations on n letters, also known as involutions". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  55. Sloane, N. J. A. (ed.). "Sequence A002414 (Octagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-23.
  56. "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  57. Sloane, N. J. A. (ed.). "Sequence A007283". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  58. "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  59. Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  60. Sloane, N. J. A. (ed.). "Sequence A085150 (Numbers n such that n!!!!!!+1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-30.
  61. "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  62. "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  63. (sequence A033453 in the OEIS)
  64. Posner, Eliezer. "On the Meaning of Three". Chabad. Retrieved 2 July 2016.
  65. Dennis, Geoffrey. "Judaism & Numbers". My Jewish Learning. Retrieved 2 July 2016.
  66. "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  67. Sloane, N. J. A. (ed.). "Sequence A050381 (Number of series-reduced planted trees with n leaves of 2 colors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  68. Sloane, N. J. A. (ed.). "Sequence A242882 (Number of compositions of n into parts with distinct multiplicities)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  69. Sloane, N. J. A. (ed.). "Sequence A063769 (Aspiring numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) = number of partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. Sloane, N. J. A. (ed.). "Sequence A003154 (Centered 12-gonal numbers. Also star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  72. Sloane, N. J. A. (ed.). "Sequence A001550 (a(n) = 1^n + 2^n + 3^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. Sloane, N. J. A. (ed.). "Sequence A000274 (Number of permutations of length n with 2 consecutive ascending pairs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  74. Sloane, N. J. A. (ed.). "Sequence A325508 (Product of primes indexed by the prime exponents of n!)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
  75. Sloane, N. J. A. (ed.). "Sequence A051885 (Smallest number whose sum of digits is n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
Integers
0s
100s
200s
300s
400s
500s
600s
700s
800s
900s
1000
Category: